大家看到,我们要做好这个全流程的真正部署到一个应用里面去,需要有底层硬件的支持,不管CPU、GPU还是移动端的硬件,以及相应要有推理引擎,然后有各种不同的程序设计语言的支持,相应的工具以及提供软硬一体的方案等等一系列,形成全流程的部署方案。 举个例子,比如说我们把这样一套设备端部署解决方案用来进行识别虫害,这样一个任务,我们涉及到底层的平台,涉及到工具站,涉及到模型怎么样训练、怎么样部署等等,当然这一系列是基于百度的平台支持。
我们都知道现在深度学习的核心是神经网络,网络第一步要干什么?第一步要做网络结构的设计,网络结构设计早些年更多是靠人类专家来做这个设计,靠他的经验,经验更足,人可能把网络设计的更好,从而得到更好的结果。但是这个过程其实是专业度很高同时也不容易的一个过程,现在我们已经可以进行自动化的网络设计,这里就是一个自动化网络设计的例子,大家可以看到,左边是专家手工设计的网络,右边是机器自动设计的一个网络。 我们基于这套自动设计网络AutoDL,也进行了开源,也在PaddlePaddle进行了AutoDL部分的开源,同时也进行了模型的开源,效果达到了比人工设计网络更好的效果,相当于它自动化程度更高,省时省力,同时效果也更好。
前面我提起深度学习现在用的非常广,但并不是每一个人都很全面的掌握了深度学习技术,那么我们能提供一个更方便的工具平台,可以让基础不太多甚至零基础的人也能来用、来解决自己的问题,我们提供了这样一个定制化训练和服务平台,EasyDL,可以把各种数据送进来进行加工学习、部署,最后提供服务,既可以提供云端服务也能提供各种智能设备上的服务。
这里我不再讲EasyDL背后的各种技术,但是给大家看一个曲线,我们看一下基于EasyDL进行模型训练的数量在持续的增长,现在已经有超过三万个第三方应用的模型,基于EasyDL实现,然后来解决自己的任务。
这是另一个例子,农作物,在农耕地块的识别,这里涉及到在这个应用场景里面提取相应的数据,然后用卫星遥感数据进行模型训练,然后进行融合、部署,最后完成一个,比如说这个地块里面,作物长得怎么样,有没有灾害等等进行这种识别,自动的就可以进行农耕地的监测。 刚才举的只是两个行业,我们看一下,实际上百度的飞桨这个深度学习平台,已经用在很多行业里面,用在很多行业里面,我们也相应的要看一看各个行业发展的趋势。当然这个报告是麦肯锡提供的报告,我们可以看到,深度学习一旦应用到某一个行业里面,可能带来的提升幅度,大家看到,旅游、物流、零售、汽车等等,各个行业都可以因这个深度学习的应用带来很大的商业价值的提升。 时间也到了,我今天的报告就到这里,我希望我们的飞桨深度学习平台能推动人工智能发展,加快产业智能化。
(责任编辑:admin)